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PROPAGATING MODES ON A BURIED LEAKY COAXIA L CARLL~

by

Steven W. Plate, David C. Chang and Edward F. Kuestor

I. Introduction

The problem of wave propagation along a buried , insul tatod wire has

long been associated with long distance communication at very low and

extremely low frequencies (VLF and El.F).~~~
1 Operating at lon~’ waveleng ths ,

• the wire is usuall y very close to the earth surface, say within one or two

• skin-depths so that the interaction between the wire and the air-interface

plays an important role in determining the propagation constant of the current

waves supported by the wire structure .~
21 More recen t ly , buried wires

operating at the higher end of the radio spectrum , 100 MHz for instance ,

have also found impor tant applications as wave guiding structures in the

design of groundwave radar detection systems either for vehicle monitoring

or perimeter surveillance. These wires again have to be placed close to the

earth surface in order to avoid unnecessary loss into the surrounding earth

as wall as to enhance area coverage . In many practical applicat ions , leaky

coaxial cables , ei ther in the form of braided wires or per iod ic slo ts in

the ou ter shea th , art’ used to allow clcctromagn~t i c wav es to leak out

• continuously from the coaxial region into the surrounding medium . It is

apparent that the characteristics of the propagating modes supported by

such a waveguidtng system would Have to he in fluen ced  Lw the ’  a i r -ea r t I~
interface.  The purpose of t h i s  report is to  invest i g .t t e’ sudl an influence .
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A rela ted problem concerning an elevated wire structure above earth

surface has been s tudied ex tonsive ly . E 3~
4
~

9 h 12l It  is found that  a bare

or a d i e l c c t r i c . u l l y-coat ed wire  u s u a l l y  support s two d i s t i n c t  m odes.

One of the two modes has a field structure more concentrated between the

wire  and i t s  image and approaches th e’ conventional t ransmission-line mode in

the l i m i t i n g  case of a p e r f e c t l y - c o n d u c t i n g  e a r t h .  Such a mode Is  referred

to as s t ruc tu re -a t t ached . The second mode , however , is more spead out over

the a i r - ea r th  i n ter f a c e , much I Re  a groundwave f i e l d  guided along the

direct ion of the w i r e . This  mode is then referred to as surface-attached .

Althoug h the two g e n e r a l l y  exh ib i t  very different properties , both propa-

gation constant s are very close the wavenumber in air , and degeneracy of

the two can occur when the wire parameters are properly ci~osen F~
2l . The

result  of our invest igat ion indicates  that  such a pheno menon does not

exis t in the case of a buried wire , however .

2. The Moda l L~.q~tat ion

• Consider  an i n f i n i t e l y  long t h i n  cable  of ex ter ior rad ius a bur ied

In the earth at a depth h parall el to the :—axis . The earth ,region 1,

(x ~‘ 0) is assumed to he nonmn agnet ic , havi ng the refractive index

n 
~~r L ~ and region ‘ . the r e f rac t  ly e  index Ii . In t h i s

prob l em , region 2 usua l l y represent s free space which ~iieans that n~

reduces to u n i t y ;  however. a, is left a u - i  t r a r y  for general it v . Al 1

field quantities are assumed t~- vary as exp( i~ k :  - iu~t where ~ is  the

yet undetermined , complex pi paga t  ion cons tan t  of a d i s c r e te  mode . The

geometry of this prob l em i s IL Lust rated in L~ i gu re 1 . We f ur t  her assume

• t h a t  the  cab Ic I s  t hin compared to  t h e  depth at whi ch i t  i buried (a ‘ ‘- h i
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and t o the wavelength in region 1 (ka~n1( < ‘I where 
~

This implies that the current on the cable will be virtually only i-directed

and will be 0—independent . The corresponding modal equation for propagating

modes supported by the wire structure is then found by assuming a current I

on the cable , ca lcula t ing the average i -directed E-field on the exterior

surface of the cable due to the current I , and then enf orcin g the boundary

condition E 2 -IZ(c i )  where Z(a) is the surface impedance defined at the

surface of the cable. Al l  of the dependency on the internal structure of

the cable is contained in the surface impedance Z (ci) . The resulting modal

equation is given in [31 and [4]:

H (c*) M (a) + 4wc Z( ci )/k  0 (1)

where 

2 (1) (1) 2M (ci) (~~ /n 1) [H (~ 1A) - H (~ 1H) ] + P ( ~ ;H) -ct  Q (Ci ;H) (2)

2 exp(-u 1H)J + 
— dA (3)

-, ç~ 
exp(-u1

H)
Q(cz;H) i~ j 2 2 dA (4)

~ ~2u1 
+ n u

2

U
1 ~ (A 2 

- c4) ; -n/2  ~ arg u 1 < im/2 (Sa)

2 3
- ; -i~/2 arg u~ < im/ .~ (Sb)

2 2 +  •(n 1 -o ) ; 0 arg 
~l ~ 

(~a)

-, ‘ 3
C,, ~ (nt , - c 1 ) ; 0 c arg ~., ‘- IT (6b)

A~~~k a ;  H = 2 k h
0 (1

A -•-• •— — -•-• _ _ r ~~~ t~~~~~~ ,_—--- — _~~~ •-__— .__ •••_____c•_~ fl&ttr_  • t t_’~~t~tV _~~ - — — - • 
• •



5

Here , H U) (x) is the Uankel function of the f irs t  kind and of order

zero . We note that the arguments are chosen so that the fields

found in the derivation of (1) are bounded at inf in i ty  in the transverse

direction . The arguments of u 1 2  are chosen so that a l l  of the integrals
A converge everywhere in the complex A-plane. While equation (1) is appli-

cable to a class of thin-wire structures t ’ ~~
1 we are specifically

inte rested in the app lication to a leak y coax ial line composed of a center

conductor of radius c and refractive index n ;  a dielectric insulator

around the conductor of index 
~~~ 

a thin un i fo rm metal braided sheath of

radius b and transfer impedance ZT ; and a dielectric coat ing around the

sheath of index n and radius a a~ shown in Fig. 2. Provided the amount
a

of leakage is small , the sur f ace impedance can be found by calculat ing the

quantity

E ( p ,c&)
= (7)

2itpII~ (p ,c*)

when the cable is driven by an axiall y symmetric source , where is

the i-directed electric field and H
4, 

is the 4,-directed magnetic field.

According to Wait [5], Casey [6] and Wait ahd Hill [7], this transfer

impedance is given by

Z(o) = Z (ci) + ZT(o)[Zb
(cl) + (o)l/[ZT

(cz) + Z
b
(o) + Z.(ci)] (8)

where 2 2
( n- c z ) k

0 aZ (ci) = 2TT ic ~~~ tn(~ ) (9a)
o a

2 2 2
-a )k bZb(a) 21Tic~~i~ 

2~n(—) (9b)

J ( 1 k c)
Z~ (a) = 2 ‘ “~ k “ 

(10)1 2ncc tan “l”w 
C )

o w
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Figure 2. Cross section of a leak y cable and its
equivalent circuit representation
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The equivalent circuit representation of (8) is also shown in Fig.  2.

We note that Za b  in the case represents respectively the series impedance

due to the dielectric layer between a and b , and between b and c;

is the internal impedance of the inner conductor, and Z
T 

is the

$ shunt transfer impedance of the braided sheath. For a hig h ly  conducting

inner conductor Z . ( c t) reduces to

ik J ( n k c)-, - 
0 0 W O  11- 

21Tcc &~,n J
1

(n k c)

which is then independent of a .

• The transfer impedance of the braided sheath is given in [5] to be

_ik2Lr 2
ZT
(O) = 

:~~o 
(1 - 

U 

n~ 
~ (12)

where LT 
is the transfer inductance. It is particularly noteworthy that

the total surface impedance as defined in (8) , is a function of the

propagation constant a .  Furthermore , it is easy to show that denominator

of (8) may be rewritten as

(ZT(a) + Z
b(a) + Z.) = Z’~a

2 
- a~) (13)

wh ere 2ik r L 1
= 2nc ~~~~ 

tn( !.) + 
2 2 J (14)

“ lt
b 1Jo

(fl
a 

+

2 
n~ (n 2 +n~)[ii Qn (b/c) +L

T
+i 2lTZ./w1

(15)

[(n2 + n~)~i Ln(b/c) +

• ~~~~~ ~~~~~~~~~~~~~~
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This shows that the Z(ct) has a pair of poles at a = ±a~ . As will

be shown in a later section of this report, these poles have a strong

influence on the location of one of the roots of the modal equation .

3. Approximate Expression for the Integrals P(c t ;H ) and Q(a ;H)

The integrals P(cx;H) and Q(a;H) as given in (3) and (4) may be

computed numerically in order to find the roots of M(c*). This can be a

time consuming process considering that M(ct) mus t be evaluated several

times for each root found . It is desirable to find appro ximations to

P(a ;H) and Q(a ;H) that are valid in the regions of interest and are more

efficient to compute than di rect numerical integration . These approxima-

tions may also be used to find limiting forms of M(ct) in special cases .

In (81, approximations to P(a;H) and a slightly different fo rm of

Q(cz;H) are found that are valid in the region 1c 11 << k2 1’ This corre-

sponds to cx in the neighborhood of n1. Any root in this region would

be hi ghly attenuated , so even though root s may ex ist in thi s region , they

are not extremely important. Instead , we at tempt , in Appendi x A , to find

approximations that are valid in the region 1c11 >> ‘~ 2 ’’ because any

mode found in this region has a rel atively low attenuation . The approxi-

mations need only be valid for ~n1 JH < 1 becaus e the cable usually is

placed wi thin a skin depth of the surface in order to insure sufficient

penetration of the wave into the air region. In such a situat ion we

• have shown in Appendix A that P( a ;H) can be approximated by

P (c i ;H )  = 
1 

2 [4(1 — i~~1H) + (~ 2 C 1H / 2 N ) 2 tn( ~ 2I~ 1 ) ]  exp(i~ H)I

+ 2HcY)(~ i
H) - 2H~~~ (~ 1H ) / (~ 1H ) ,  (16)

____ • •
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where H~” is the Hankel function of the first kind and order m and• m
only the principle value is chosen for the logarithmi c function .

Approximation for Q(cx ;H) is somewhat more complicated because the

integrand as given in (4) has a pair of poles located at A tX~, where

A - 
(c4 

- a2)~ ; - n 1n 2 (n~ + n~)~~ (17)

and Tm A ~
> 0 in the complex a-plane. As shown in Appendix A , the

discontinuity of the residue contribution at A = A when A crosses the

real axi s produces a pair of square-root branch cuts with branch points

located at U — in the complex a-plane . An approximation which specifically

• takes this singularity int o account is obtained from (A.4 l )  in Appendi x A

as
2 2

~~~~ 2 “~~ 2 2 ½
Q(c*;H) ‘[

~ 
—

~~ 

- 

~ 
exp (in 1H/ n) J / ( cx  -cii + Q (a ;H) (18)

- “2~ 
-

Q’(c*;H) 
~
_
~T ~

.n~Q (a ;H) + n~Q2 (a;H) r n~Q~(a;H)] (19)
iIT (n

1 
- n2 ) • -

2 2 ½where n — (n 1 + n 2 ) . Expressions for Q~ for j  — 1,2 , 3 are derived in

(A. 27),(A. 36), (A. 39)respectively in Appendix A and arerepeated here ,

/11TU \
Q (a;H) • iit H,~~~ (~~,H) - (~_~~l~P) [exp( u 1 HXI4 t

~~( i u 1 /C 1p t~1H)

— exp (u1 U) ii
(l) (iu 1~/r~1~ C1

11)]

+ (2U11,1A~ ) cosh(u
1~

II)F tn (iu 1~
— i N~) - thc1 ]; ( 20)

Q~ (a;H) — exP(u 1~ H)E 1n( I I [ — l I 1 — U

11)
]) •exp(u

11~
U)Fin (II (—i~ 1 ‘n 1 1)

— [exP (Pu 1~H) + ex~ (u1~H) 1 [Zn(H ) • + [exp (—u
1 

II) — exp (u
1 
H) Q n ( _  iC ,1.u 1

)

(21)

• . • ~~~~~ _ - - — ---- -- - ~~~~~~~~~~~~—- - — -- --— - •-- - -- •
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Q~ (a ;H) 2 exp(-u
1 

H) {Ln 2 -~ n(-g 2) - (u2 / A ) [~n( - iu 2 -i A )  -tn (-C 2 )] }

2 2 3  2 2 3  (22)
where u1~, = (A1, -C 1) and u2~ (A~ -C 2) ; H~ ~ is the Schwarz

or Lipschitz-Hankei integral defined in [12] as

H~~~(a,z) = 
J

exp(iat)H ”~ (t)dt

and can be computed from a series expansion given in (A.23). Em isthe modified

exponential integral given in [10] as

0O k
Ein(z)  -. ~~ (-z)

k =j . k ( k ! )

Finally, the logarithmic function Ln(z) is specified by its principle

value. It should be noted that the behavior of Q ’&i ;U )  given in (19)

is not singular at a = Ct8.  and its value at UB may be found usin g

(A .27b) , (A. 36b) and (A.40b) . However , the fi rst term in (18) does contai n

explicitly the term (a2 -ci~Y3 so that the expression of Q (ct ;H) w i l l

blow up when a = aB.

4. Classifi cation of Modes

Because the leakage of a braided cable is usually very small (i.e.

L1<<p /k ) it is log ical to view the propagating modes of a buried leaky

cable as resulting from coupling of modes between the coaxial cable and the

external waveguiding system of a buried and insulated wire located near

the earth surface. Thus , by inserting (8) and (13) into ( 1), ~~e modal

equation can be rearranged to reflect such a viewpoint :

(Ct
2 _ c4) (M (a) + (4wc /k2)Z (a)] + A (a) = 0; (23)

- - ‘• • • - • ~~~~~~~~~~~~~~~~~~~~~~ L
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where

~c~
] (~.~ .2)[Z~~~ + Z 1~aflZ1~q)/Z ’ (24)

and I~~ct ) I << 1 because is assumed to be small . For s impl ic i ty ,

we let Z~ (ct) - 0 so that the center conductor of the leaky coaxial is

perfec t ly  conducting. As is evident in (23) and the def in i t ion  of 11.

In (12 ) .  if we now let the t ransfer inductance of the braid Lf approach

zero then we have a - - which obviously corresponds to the TEM-

mode of a coaxial l ine  wi th  Inner and outer radii c and h. Provided

the leaka ge remains sm a l l , we can find the solut ion of the modal

equation by perturbation ; the zoroth-order solution is a = a1; the

first-order solution is found by Inserting t’i. for a In M0(a), 2 (a)

and A (ct); the second-order solution is found by inserting the first-

order solution in M0 (a) . Z ( ~ ) and t~(a) ; etc. Similar  to the TEM-mode

in a coaxial l ine , we expect the current in this case to be almost equal

and opposite on the inner conductor c and the inner surface of

conductor b. Such a mode i s designated as a bifilar mode. On the other

han d , other acceptable solutions of (23) when A(a) -, 0 may be found from

+ (4ta~~/k )l (~ ) a 0 (25)

which obviously represents the modes supported by an insulated conducting

w ire , or a Gouba u- l ine  buried near the earth surface , and w i t h a su r face

impedance of As shown in [21, such a l i n e  supports at least one

mode wi th  a known propagation constant in the low frequency l im i t .  The

current is now hig h l y  concentrated on the outer surface of conductor b ,

and consequently, the mode is designat ed as a m on of i l ar  mode . Obviously,
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the value of ci may be found again from a perturbative scheme based

upon a zero-order solution obtained from (25).

In addition to the monofilar mode, it is known that a second mode

near a = ct8 also exists in the case of an elevated Goubau-line in air

and located near the earth surface [9], [12]. Mathematically, the

occurrence of this mode is heavily influenced by the inverse square-root

singularity of the Q-integral in the modal equation ; such a singularity

is displayed explicitly in the approximate form of Q given in (18).

The dominance of the Q-integral also means physically the field distribu-

tion of such a mode will be much more spread out along the air-earth

interface than that of the monofilar mode, and consequently , is designated

as a surface-attached mode. In Appendix B, it is shown that this mode

indeed can exist for a sufficiently small buried depth H, but may cross

the branch cut (Re(ct2 - ct~) = 0) and become an improper mode for a

larger H.

Before we present the numerical evaluation of modes for a general

case, another special case of interest is when the wire is located at

the air-earth interface. Consider the limit as H approaches zero,

while keeping the ratio A:H sufficiently small so that the thin wire

approximation continues to hold. If we keep the relative cable geometry

the same then the transfer impedances Za(U)~ 
Zb(ct)) Z1.(ct), and

quantity V wil l  remain constant . We will again assume that

Z~(a) is zero for simplicity. The two Ilankel functions in the

expression for M0(ct) in (2) diverge individually : however , their
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difference approaches a constan t , By taking the limit as 11 approaches

zero in (16) and (18) we find that both P(cz;H) and Q(cz;H) diverge

logarithmically, Hence in this limit M
0(a) becomes

4 itn (H) [~
_

~ 
- ~2] (26)

n(n + n2)

By inserting (26) into (23) we find that we can neglect Z~(a)~ Hence

we obtain

(a2 - 
2)~~1 2 

- ~
2
~\ = 

[in(n~ 
2]~~(a) (27)

4~~n H

As H approaches zero the term on the r ight side of (27) vanishes so in

this limit , the value of a for the monofilar mode reduces to

ci = ((n~ + n~)/2]~

which agrees with the well-known result obtained by Coleman [11] for a

thin-wire located in the air-earth interface.

5. Numerical Results

We have developed a computer program to compute the roots of the

• modal equation (1). This program computes P(a;H) and Q(a;H) either by

direct numerical integration of (3) and (4) or by the approximations

given in section 3. Unless specified otherwise , the refractive index

of the earth is taken to be n1 = 5.3 + iO.95, and for the air n2 = 1.0.

The frequency is f=l OO MHz, and the dimensions of the cable in

reference to figure 2 are : n~~1.15 cm ; b =1 .0 cm; c = 0.4 cm. The

braid inductance is = 40 nfl , and the inner conductor is assumed to

be perfectly conducting so that Z. = 0. The refractive index of the

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_______
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coating was 
~a 

1.449 which corresponds to Teflon. The insulator

refractive index was varied from nb = 1.0 to 1.449, and the depth at which

the cable was buried was varied from h = 0 l m  to l .Om. The skin depth

of the earth is about 0.5 m so that the root locations should be

relatively independent of h when Ii > 0.5m. In all cases, we found

two and sometimes three distinct roots for any given set of parameters.

The first mode is a bifilar mode in which the currents on the inner

conductor and the braid are approximately equal but have opposite signs.

This mode has the least attenuation of any of the modes since the fields

are concentrated on the inside of the cable. The location of this root

tended to follow cs~ when the value of was changed. A plot of the

location of this mode as a function of h is given in figure 3.

The second mode is the monofilar mode in which almost all the current

is on the braid, so this mode is similar to the case of a buried coated

wire. A plot of the location of this mode is given in figure 4. Note

that this mode has an attenuation of about 12 to 15 dB/mn . Although it

is heavily attenuated along the line , such a mode has the major part of

field distribution located outside of the cable and, hence, is capable

of interacting with surrounding objects in earth.

The third mode is the surface attached mode which has its fields

concentrated near the interface between the air and earth. As shown in

figure 5 this mode only exists for certain values of h. For h > 0.34 or

h < 0.19 m , the root crosses tho branch cut onto the improper Riemann surface

in the complex a plane. The mode becomes improper in these cases and is

absorbed in the surface wave radiation. Even when this mode does exist

it is located very close to the branch point  U
B 

given by (17) . For

- ~~~~~~~~~~ ----- —~~~ ..
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this reason the fields of this ulode wi l l  b,e very similar to the ground

wave fields which. are spread out along the entire surface .

The accuracy of the approximations to P(cz;H) and Q(a;H) was determined

by comparing the values of the roots found using the approximations to the

values obtained using the numerical integration . For the bifilar mode

-5at h = 0.1 m the values of the roots agrees to within 10 and at h = 0.1 m ,

they agreed to within 8 x lO~~. For the surface attached mode the roots

agreed within l0~~ for all values of h. For the monofilar mode the

approximations gave completely inaccurate results except for very small h

say h < .01 m , because the assumption that IC ]j >> k 2 1 is no longer valid

in the region where a of this mode is located. Thus, only direct numerical

integration is used in this case.

6. Concluding Remarks

- - In this report we have investigated the roots of the modal equation

for a leaky coaxial cable buried in a lossy earth. We have found that

three distinct modes do exist for most cable depths of practical interest.

We have given perturbation formulas to locate the roots of two of these

modes.

Of the three modes the bifilar mode is probably the easiest mode to

excite since the fields are similar to a TEM mode in a lossless coaxial

cable. This mode has the least attenuation but also has only a small

amount of field penetration into the air region because the total curren t

on the cable is nearly zero. The surface-attached mode has more field

strength in the air for a given amount of current on the inner  conductor

than the bifilar mode. For this reason , such a mode is ideall y suited for

the design of a groundwave detection system. But since the location of

this mode is close to the branch point at ~ ~B’ 
one may not he able to

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
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excite such a mode independently without substantial surface radiation.

The monof ilar mode has fields concentrated in the earth region so that

• this mode is highly attenuated.

From the above discussion it is quite obvious that there are several

conflicting considerat ions in the design of a wave guiding system for

detecting anomalies (or intruders). On the one hand, the bifilar mode is

easy to excite and once excited, it is capable of propagating along the

l ine with least amount of attenuation. However, its field distribution

is highly concentrated to the interior coaxial region so that it is not

particularly sensitive to anomalies located above the earth surface. On

the other hand, the monofilar mode suffers higher attenuation and the

surface-attached mode can not be excited easily. The question then is

how to bring about an optimized system which provides the best compromise

to these conflicting considerations. To this end, it may be useful to

first define a performance index of a specific mode as

= (28)
PT Im(a)

where

= J I E ~I
2dy is the integration of the magnitude square

of the vertical electric field component along the earth

surface at a given cross-section;

is the total amount of time-average power flow across the
same cross-section ;

• Im (ct) is the imaginary part of a or the attenuation constant.

Although such a definition is not at all unique, it is reasonable to assume

that the set of parameters that yields the highest performance index

according to (28) provides the “optimum” design for a detection system.
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In Appendix C expression for the field components for each discrete

wde are given. However, the actual computation and intercomparison of

the performance indices of various modes will be presented separately in

a supplemental report at a later date.
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Appendix A

In this Appendix, approximate expressions are derived for the

integrals P (cz ;H) and Q (c*;H) under the assumption that >> k~I and

1n2 111 < I n 1l H  < 1. It is easy to see from (3) that the main contribution

to the P-integral comes from the range of A where u2 can be approxi-

mated simply by A . We therefore divide the integral in (3) into two

parts ,

P( a ;H) = P1(a;H) + P2(a;H) (A.l)

where P1(a:H) 
represents the dominant contribution, i,e,,

rexp(-u H)4 j 1 dA
1 

~0 1

= 

~~~~~~~~~ 
{fx

exP(-ui
Il)dx - 

f 
u1
e~~’~~x}

which is known analytically to be

= 
. 2 ~ 41 exp(il 1H)
‘fl i L  H j

+ 2 L L U) (~ 1
H) — ~~~~~~~~ H~~~ (ç

1
U) (A.2)

The remainder term P2 (c& ;H) is now given by

p2 (a ;H) = 

~~~~~ 

1~~~~~~~”2 
- exp(-u 1U)d A (A.3)

_________________________________ 
- 

- 
-
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Note that the term in the brackets decays as A • 3  for large A so the

important part of the integral where A is small. For H small enough

the ~~~~~ 1.ial term is constant for A less than some A0 so the exponen-

tial term may be replaced by its value at A = 0 for the integration of A
• . -3between 0 and A0. Since the integrand decays as A for large A

the integration from A0 to is insignificant even without the exponen-

tial decay. This allows us to let 
~~ 

approach infinity without affecting

the results, The exponential term is replaced by its value at A = 0

instead of unity so that P2(a;H) remains small when compared to P1(ct;H) -

as n 1 approaches infinity. Hence P2 (a ;H) is approximately

P2(a;H) 
~~~~~ 

exp(i~1
H) Urn - 

u~ + 
~] 

dX

2l~
= 

. ~~ 
exp(iç1H)tn(r~2/ç 1) (A.4)

where N2 = n~ - n~ , and the principal branch of the logarithm is chosen.

Substituting (A.2) and (A.4) into (A.l) yields

2 2 2
~~aH /~ \1

— 

2 Il -i~1
H + 

2 1 £n t~
_—
~-)J

exp (i
~1
u)

i1T~1H L 2N c1

+ 2H,~~~(~1H) - 

~ p H~~~O 1H) (A.5)

This approximation for P(ct;H) is valid for k2 1 << k 1 1 or for HI~1I << 1.

In the latter case (A.5) may be further approximated by -.ising the small

argument expansion of the Hankel functions to obtain

• 2~
2i (r

P(ct;H) ~~~~~
- ftn (c1H) 

+ y -~ n 2] + 1 - ~~~~~- —

~~

-

~

- th 
‘fl i ) 

(A.6)

-
.- -

~

- -------.
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where y 0.577216 is Euler ’s constant . The result given in (A.6)

agrees with the approximate formula derived earlier by Chang and Wait in [2J.

On the other hand , by multiplying and dividing the Integrand by the

factor n~u2 
- n~u1, the integral Q(a;H) us given in (4) may be rewritten

as
2

1- n  u - n u
Q(a;H) 4 4 j 2 2 

1 cxp(-u
1
11)dA (A.7)

iir(n1 -n 2
) A

where

2
A

P
(aB

_ c * )

2 4 . ’~’~~— - n2/n) 0 � arg A~ < ir (A. 8)

n = (n~ + n~ ) 0 < arg < n (A.9)

a8 n1n2
/rt (A.lO)

The integrand in (A.7) appears to have a pair of poles at X= +A ~~ the

location of which arc a function of a. According to [8] the discontinuity

of the residue calculat ion at A A when A crosses the real axis causesp p
a branch cut in the a-plane of Q(c&;H). In addition , Q(c*;H) becomes

unboun ded as a approac hes the branch point ct~ because A1, tends to zero

and the integral in (22) does not converge when A equals zero.

In order to insure that the poles do exist , the numerator in (A.7)

needs to be evaluated at A = A ,  and verified that it is non-zero there.

In the physical case that region 1 is the earth and region 2 is air,

the following relationships hold:

arg n 1 > arg n > nr g n2 > 0 (A.ll)

Under these constraints it can be shown that

— ~~~~~~ — 
-—- - --— -
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2 A
u11 • U 1 — -in1/n (A.12)

£

p

If in addi t ion we can assume that

arg > 2 arg n2 (A.13)

then it can also be shown that

u
21 

u2 in~/~n (A. 14)
A.A~

Using (A.12) and (A.l4) the numerator of the integrand of (22) is

evaluated at A a A to bep

2 2 2 2 ’nlu2 
- n

2
u
l 

= 2in1n2/n (A.15)

A=A p

which is non-zero, hence the integrand does have poles at A = iX . Note

however that the relationship (1.13) may not always hold if both regions

1 and 2 are lossy, in which case the sign in (1.14) should be reversed

and the poles would disappear.

An approximation for Q(a;H) will now be found in which the singu-

larity at u • a
8 

is accounted for exactly. In addition the approximations

will have the proper limit as ç~ approache s zero , or as H approaches

zero. Rewrite (A.7) as

Q(a;H) - 4
2

4 {~ n~Q(a;H) + n~Q2(a;H) + n~Q3(a ;H) } (1. 16)

wher e

Q1(a;H) - f— ~
_J
yexp (_u

1
H)dA (A.17)

a 2 f~—~-~-~- exp(-u111)dA (A.I8)
A -A

ILLL - 



— --

~~~~

‘----.—-

~~~~

.,-“ - - 
~~~~~~~~~~~~~~~ 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~
-.--•-,-.--

25

~ 
u~~-A

Q3(a;H) = 2! 2 2 exp(-u1H)dA (1.19)

~~A -A £

p

The integral Q1(a;H) is evaluated as follows.

2 I exp(-u H)
Q1(ct;H) = 

_
~~~ .c~

J 2 2aH ~~ (u1 -u1~,
)u

1

-~ 

= 2u1~ ~~~ ~
Q11 (a;H9u1~

) - Q11 (cz;h,-u
11,
)) (A.20)

where

~ exp(-u1
H)

Q11 (a;H,u1 ) =j (u1-u1~)iij 
dA

J°°[exp(-(u 1-u1 
)H) -11

= exP(_u
1~H)1f ( u U ) U

1’ dA

(u~-u~~)u~

J H exp(-u1
H)

= exp(_u1~:;
1
_J :xp(u1~t)J 

— 

dA dt

~ ~~~

2
-~~~ 

lp 
~~ (A2-A 2)u1

= exP(-uipH){-
ilT

J~ 
exp (u1 t)H

W (C
1
t)dt +

+ 

~~ (A2-A 2)u 1 

} (1.21)

In order to evaluate the finite integral in (A.21) we can use the

incomplete Lipschitz-Hankel integral or Schwarz function which is defined as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- —
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HJ~~ (a,Z) - 
J
exp(iat)H(1)(t)dt (1.22)

This figtction may be evaluated using the following expansion [6]

I
HeU)(a,Z) = Z ~F1~

1
~~(Z) ~ C~ C ( ~:*)

mzO

+ ZH~~~(Z) ~ (iZ)
m 

C (a)J~ (A.23)
m=0 (m+1)1 J

where Cm (a) is given by the recursion formula

C (a) 1; C1 (a) — a/ 2; C (z) = 

~~ [mC 2
(a) + am], a 2~ 2

The infinite integral in (A2l)has been evaluated in [9] to yield

I: (A 2 A2)u 
= 

~~(C~~-A ~~~ {2 
+ Ln[(C~ - A 2

)

+ 
- jA ] - Ln } 

(1.24)

where the princ ipal branches of the tn terms are chosen, and the square

roo ts have pos itive real par ts.

Using (1.22) and (1.24) we can write Q11
(cz;H.u

11,
) as

Q11 (a;H~u1~) = exp(-u
11,

H) 
{

~~~~~H41)
(~~~~~1P ,

~i
ii)+ .

~~~~~

2iu 1.
+ 2

1
~I~~j 2  t n E Q,~ -x ~) -i~~ -in (1.25)

We obtain Q11 (a;H 1_u 1~ ) by repla cing u 1~, with -u1~, in (1.25). We

may then substitute iu1~, for (~ 
- A~)~ . By inserting these expressions

into (A.20) and differentiating , we obtain the folLowing expression for

Q1 (cz ;H)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _



iiru
Q1(cL;H) 

= Q~(a;H) + ~~h1~ exp(-u1 H) (1.26)

wher e
iitu iu

Q~(ct;H) 
- 

~~‘‘~ exp(-u
11,

H)He~~(- ~‘1’ , ~1
H)

iiru iu
+ 2r 1 

exp (u 1 H)He~1k 
I~, C~H) + i1THU)(C 1H)

+ ~~~ [exp(-u1 11) + ex~(u1~
FI)] [t n (iu

1 
-iA

1,
) -tn

(A. 26a)

The second term on the right side of (1.26) contains all of the

singular parts of Q1(c&,H) near the branch point a8. At a = 
~B’ Q1(a,H)

is finite and reduces to

Q~(a8;H) = inH~~-~(iu 1
H) + u

1 H~rH~~~(iu1 H) (1.27)

The integral Q2(a;H) may be evaluated as follows :

Q2(a;H) 
= 2J 

~~~~~~ 

exp(-u1li)dA

ul~ 
{Q22(a;H~u1~) - Q22(a;H~-u1~)} (1.28)

where

= ‘: ~~
-
~ 11, :XP 

u~ dA

= exp(_u
1~H)f ex~ (u 1~t) 10 

A exp(-u1t)dX dt (1.29)

This las t s tep is va lid only if Rea1 (u1
_u

1~) > 0 for all A • This is true

if Real(-iC1 -u 11,
) > 0. We will derive an expression for Q22(a;H ,u

11,
)

- —- - -~~~~~~-— --- - - - ~~~~- - - -~~~~~ 
- 

- — -.- —~~~ ______
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assuming that ci is in the region in which the above inequalities hold.

We will then analytically continue the resulting expression for all values

of a . Note that this problem does not exist in the derivation of

because Real(u1 +u1 ) > 0 for all A and all a.

Doing the A integration in (A.29) yields - - 
-

_ _  
1 1

— exP (_u
1~H)j 

~ 
1 

+ 

~~~ 
exp[(1c

1 
+ u

1~)t]dt

— ~~ exp(i~~H) + u1~, ex~ (-u 1~H)E 1(HE-it 1 
_ u

1~]) 
(1.30)

E1(Z) and 82 (Z) are the exponential integrals of order 1 and 2 respectively

[9]. Alternately may be expressed as

81(Z) = Ein(Z) - Ln(Z) - ‘p. (A.3l)

where y is Euler’s constant (=0.577216), and E .~~(1) is an entire

function which has the expansion [9]
k

Ein(Z) = - 
(-Z)  (A .32)

k.a

Inserting (1.31) into (1.30) we obtain an expression for

Q22(a;11~ a1~)

* ~~ exp(ir.~1H) + u1~, ex~(-u1~H)Ein CH [-i~1 -u 1~))

- u
1~ exp(-u1 H)[R.n H÷ .in(-iC1 

_ u
1~) + y) (1.33)

= ~~ exp(i~~H) + u1~ ex~(-u11,H)iin (H[-il 1-u 1~])

- 
ulp exp(-u1 11)[Ln li - tn (-i~1 +u 1~) + yl

- 2 u
11,

ex~(-u 1 H)tn(-iA~) (A.34)

I 1~~
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The only singularities in (1.34) are the branch cuts due to the

square root in and the logarithm of A1,, hence this form is the proper

analytic continuation for all a.

Inserting (A.34) and (1.33) with ..u1~ substituted for u1 into (43)

we obtain the following expression for Q2(a;H)

Q2(a;H) = Q (ct;H) - 2 exp (-u1 H)Ln(-iA ) (1.35)

where

Q;(a;H) = exp(—u1 H)Ein(H [-i~ 1 — u 1 }) + exp(u1 H)Ein (ti[-i~ 1 +u ] )

- [exp(-u
11,

H) + exp (u 1 H)][R.n(H) + y]

+ [ex~(-u1~H) 
- exp(u1 H)]Ln(-ir 1 + u

11,
) (A.36a)

Q (a;H) has a logarithmic singularity at a = a8 due to the last term

in (A.35). Q (a;H) has no singularity at a = a8 and may be evaluated at

this point to obtain

Q~(a8;H) = ex~ (u
1~H)E in(2u

1 H) 
- (exp(-u 1 H) + exp(u

1
H)][Ln(H) ~1]

+ [exp(-u
11,
H) - exp(u

1 H)]tn(2u1 ) (A.36b)

The integral Q3(a;H) may be rewritten here as

2 ~
.°° exp(-u1H)Q3(a;H) — -2C2 I — 

2 2 dA (A.37)
~o (u2+A) (A -A )

From this expression it is apparent that Q3(ct;H) vanishes as ~2 
approaches

zero. The integral also converges even when H is Set to zero whereas both

Q1(a;H) and Q2(a;H) diverge logarithmically as H approaches zero.

______
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We therefore expect the major part of the integration to come from the

region near the poles tA1, in the complex A-plane. Since the integrand

decays as for large A , we will approximate Q3(a;H) by replacing the

exponential term by its value at A = A~. Hence Q3(a;H) becomes

~ u, - A
Q3(a;H) 2 exp(-u1 H) ~~2~ I A - A

0 p

= 2 exp(-u1 H) 1im~~ 
- 

~~~0 

+ ~~ 
1 U 2

(A ~A 2)}

= 2 exp(-u1 H)~~n(2) - tn(-i~2) + Ln (-iX~)

+ 
u 

2 2 
} (A.38)

_~~u2(A -A
1,
)

The infinite integral in (1.38) is given by (A.24) with C2 substituted
2 2~~for C1 We may also replace 

~~ 
- A

1,
) with _iu

2~, so that Q3(a;H)

becomes

tu Tu 1
Q3~u;H) = Q~~a;H) + 

~ 

-
~~

-
~~

2

~~ 
- 2 bi (-iA exp(-u1 H) (A .39)

where

Q~(a;H) = 2 exp (-u1~H) {Ln(2) - inC-iC2) 
- 

~~~[tn(- iu2p-iXp)-tn (~~2)]}

(A.40a)

Q;(a;H) does not have a singularity at a = and may be evaluated at

this point to obtain

Q~(cz8
;H) = 2 exp(-u

11,H)[tn(2) -&n (u21,
) - 1] (A.40b)

~

- --

~ -
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The logarithmic singularity at a = a8 in the last term of (1.39)

will exactly cancel the singularity of Q2(a;H) in (1.35). By inserting

• (A.26), (1.35) and (A.39) into (1.16) we may write Q(a;H) as
2 2  .24 i n n  inH

• Q(a;H) 
2 l exp( ) + Q’(a;H) 

- 

(A.41)
X
1,
n(n1-n2) n

where

Q’ (a;H) = { -n~Q (cz;H) + n~Q (a;H) + n~Q~(a;H)} (1.42)
liT (n

1
—n

2) - 
-

Qj . Q , and Q~ are defined in (1.27), (A.36) and (1.39) respectively.

It should be noted that Q’ (a;H) is not singular at a = a8 and its value

at this point may be found using (A.27), (A.36b), and (A.40b). 

~~--~~~~~~~— - -~~~~--~~~~ - - - —  —- - -  -
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Appendix B

In order to demonstrate that a surface-attached mode may exist in

the buried cable problem, we first insert (18) into (1) and (2) to yield

an alternative form of the modal equation as

. 2 2 2  .24ia ~1n2 exp(in1
H/n)

A 
~ 4 4 2 (B.l)

p n(n1 -n2)(M0(a) + 4we l (c*)/k0J

where

M ,(a) (C~/n~)[H~
’
~(C1A) -H~

’
~(~1H)] + P(ct;H) -C

2
Q’(C H) (B.2)

and Q’(a;H) is defined in (19). The right side of (B.l) is a smooth

function of a near a
0
, so we may insert a

B 
for a and calculate A

1,
.

We ~ay then calculate a using the expression

= 4 - A~~ = n~n~/ (n~ + n~) - A 2 (B.3)

This value of ci may be inserted back into (B.l) to recalculate a more

accurate value for a

The imaginary part of A must be positive, so that if the right

side of (28) has a negative imaginary part then the mode does not exist.

We have found that this depends on the value of H. In the limit as H

approaches zero, (8.1) at ct = a
8 

reduces to

4 42nn1 n2 I
_ _ _ _ _ _ _ _ _ _ _ _  A 2 2

~ ~(n~ -n~)(n~ + n~)tn (H) ~ = (n1 + n2) . (8.4)



- .
~~~~~

-I-=--~~
- 

~~~~~~~~~~~ ‘ J T ~~~~~~~~T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _

33

If In 1! is greater than In 2 ! and they satisfy the condition that

arg i ’ > 2 arg n1, then the right side of (8.4) has a positive imaginary

• part. So for very small H a root of the modal equation exists that is

close to a = a8. As H is increased, this root may or may not exist

depending on the imaginary part of the right side of (B.l). In all cases,

as will be shown in a later section, when the root does exist it is very

close to a = a8.

— - —~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ . S ~~~~~~ ; -~~- ,, ~~~~~~~~~~~~~~~~~~~~~ ~~~~
_ _
~~~~ -:



-. 34

Appendix C

In this Appendix, expressions for the fields of the discrete modes

are given. To be consistent with the thin wire approximation, all

higher order terms of k0a are dropped. Generalizing the results of [3J

we can express the fields in terms of the z-components of the electric

and magnetic Hertz potentials to obtain

E~(x,y,cz) = ik [a~U1 2 /ax + n0aV 1 2 /ay]

= ik [ a ~U~ 2/~y - n0 3V 1 2 /Bx]

E~(x.y,a) = C~ ,2 k~ U1 2

H
~

(x ,y,c*) = ik0[aaV 1 2/ax 
-

Hy (x ,y,a) = ik0[aaV 1 2/~y + (n~~2/n0)aU1 2 /Z3x1

2 2H~(x ,y,cz) C1 2

The subscript 1 is used for the earth region (x > 0) and 2 is for the

air region (x < 0), see Figure 1. The potentials are found in [1] or [2]

to bc

U1 (x y,a) 

~I 
H~~~{c1k0

((x_h)2 + ~2)I] ~~~~~~~~~~ H~~~[Clk ((x+h)
2+y2)1J

+ 
2 J [~1~~2 - 

;
2 

exp(-u1k0(x+h) 
- iAk0y) dA

1

_______________________
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U2(x ,y,cz) = 
0 J[u1~u2 - 

~~~ : 
exp(-u1

k
0
h +u 2kx- iAk0y)dA

V1 (x ,y,a) = 

2iT~~C~ 
J[u1~~2 

- 

~~u2

1

+ ~~~~~~~~~~~~~~~~~~ 

exp(-u1k0(x+h)-iXk0
y)dA

V2(x,y,a) = 

2nk0ç~ 
f: ~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In these expressions I is the total current on the cable. and C1 2

are defined in (5) and (6).

_ _ _  ~~~-

.

. J — - - - -



________ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

36

REPERENCI ~S

EL ] Walt , J.R., (1974), “HIstorical background and introduction t o  the
special issue on L~t reme1y low frequency (ELF) communications ,”
IEEE Trans ._Communications , v. C0M22, 4, pp. 3!~3 35~..

[21 Chang, P.C.  and J.R. WaIt (1974), “Ext remely low frequency (ELF)
propagation along a horizontal wire located above or buried in
the earth” IEEE Trans. Commu nications , V . 22. Pp. 421-427.

[3] Kuester , E .F., L).C. Chang and R.C. Olsen (1978). “ModaL theory of
long horizontal wire structures above the earth - Part I : Excitation ,”
to appear in July-August issue of ~~~~~~~~ encc, LJRSI/AC (J , V.  13 ,
no. 7.

(4] Wait , J.R. (1972), “Theory of wave propagation along a thin wire pa rallel
to an interface ,” Radio Science v. 7, p~ . 67S-O7~ .

(5] Walt , .J .R. And P. A. lu ll (197~) , “Propagation along a braided coaxial
cable in a c i rcular  tunne l , ” IEFF Trans. Microwave Thcor~ Tech .
v. 23, pp. 401-405.

161 Casey , K .F. (1970), “On the effective t r an s f er  impedance of t h i n
coaxial c ab l e  s h ie l d s , ” 11 F Trans .  ENC . v. 18 . pp . 11 0— 117.

[7j  Wait , J.R. and D.A. 111 1 1 (1977). “Influence of s p at i a ’  dispersion of
the shield transfe r impedanc e of a braided coaxial cable ,” IFFE T rans.
M~rf , v . 25, pp. 7.~-74.

(8) Kuoster , E .F . , P. C .  Chnng ,  S .W . Plate and II. C. 01 sm (1977)  , ‘‘Approx-
imations formulas for the Sommerfeld integrals a r i s i n g  in  t h e  w i r e
over the ear th  ~ rob l em , “ to  Appe ar .

(9] Olsen , R.G, and P . C .  Chang ( 1 9’3 )  . ‘‘l~ lcd rorn agnet Ic  ch ar a c t  c m i  s( i c c
of a hor I zont :11 tvi me A boVe A d s s i pat i ye cart ii — P ar t  1 : l’rop:iga t ion o F
transmis sion— line and fast —wave modes,’’ S~ I . Rej It . No. 3 , (N OAA— N22-  I .~(i~~7.’)
Pept . of El cc . Eng . , (In iv. of Co In . • Ron I tie r • C o l or a do

1101 Abramowi t z , N. and I .i\ . St egun (19~S) , Handbook of M a t h e m a t i c a l
Functions . New York : h o v e r , pp. .‘.‘~~~~. 

- - -

(111 CoLeman , 11 .1. (1950) , “Propagation of ml ect roma gnet i c di si  ~irl ’ance ’.
Along a t h i n  w i  re i n  a hon ~onta liv St r at  i i i  ed m e d i u m , ’’ Phi  I . 

- Mafl .
v. 41 (ser. 7), PP~ ~“ •

~~~~~~~
-

- 

- 

112] Olsen , R.C. • . F - Kuest er and P.C. Chang ( ~ 5) , ‘‘Modal ln’om~ o t
long hor I ~.on t a 1 wi re st m c t  urt’c al’o ye t he ~~ ; ~ h h’ a ii LI : Prope i t
of the disc c c ’  modec • ‘‘ t o  appeal  i n  .It i  I y —August  i s cu m of Rad a ~c i mace
V . 13 , no. 7.

- ~~~~~~~~~~~~~~~~ A


